If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-18d+81=14
We move all terms to the left:
d^2-18d+81-(14)=0
We add all the numbers together, and all the variables
d^2-18d+67=0
a = 1; b = -18; c = +67;
Δ = b2-4ac
Δ = -182-4·1·67
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{14}}{2*1}=\frac{18-2\sqrt{14}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{14}}{2*1}=\frac{18+2\sqrt{14}}{2} $
| |5+3a|=7 | | 9x-(-8)=17 | | -14d-28=-4(d+7)-10d | | 3x-7=29x= | | (P)^3-3p-140=0 | | P^(3)-3p-140=0 | | 14-1/30x(2x)=7-1/30(x) | | v+14=8v | | 14−1/30(2x)=7−1/30(x) | | x÷2+8=6 | | P^3-3p-140=0 | | X3-27x+54=0 | | 4(x+5)=(60-2x)/2 | | u/5=12/15 | | -4/4x=-36 | | 12u−3=3(4u−1) | | 6m=–(3–m)+4 | | (x)=-3x^2+72x+25 | | 4.5x5.7=25.65 | | P=10000–400x | | 8(-1+m)+3=(m-5½) | | u/11=10/8 | | 4.5x5.7=32 | | 6+4a=7+3a | | 1/8m=43 | | 35x=5400 | | 1/3x+4=4x/5-1 | | 8(-1+m)+3=(m-51/2 | | .35x=54 | | 3x=15=5 | | x(x+1)÷2=55 | | 15x=110+4x |